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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by 
providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops 
tests, test methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for the 
cost-effective security and privacy of other than national security-related information in Federal 
information systems. This document reports on ITL’s research, guidance, and outreach efforts in 
Information Technology and its collaborative activities with industry, government, and academic 
organizations. 

 

 

Abstract 

Big Data is a term used to describe the new deluge of data in our networked, digitized, sensor-laden, 
information-driven world. While great opportunities exist with Big Data, it can overwhelm traditional 
technical approaches and its growth is outpacing scientific and technological advances in data analytics. 
To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to 
develop consensus on important, fundamental questions related to Big Data. The results are reported in 
the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 1, contains a 
definition of Big Data and related terms necessary to lay the groundwork for discussions surrounding Big 
Data. 
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Notice to Readers 

NIST is seeking feedback on the proposed working draft of the NIST Big Data Interoperability 
Framework: Volume 1, Definitions. Once public comments are received, compiled, and addressed by the 
NBD-PWG, and reviewed and approved by NIST internal editorial board, Version 1 of this volume will 
be published as final. Three versions are planned for this volume, with Versions 2 and 3 building on the 
first. Further explanation of the three planned versions and the information contained therein is included 
in Section 1.5 of this document.  

Please be as specific as possible in any comments or edits to the text. Specific edits include, but are not 
limited to, changes in the current text, additional text further explaining a topic or explaining a new topic, 
additional references, or comments about the text, topics, or document organization. These specific edits 
can be recorded using one of the two following methods. 

1. TRACK CHANGES: make edits to and comments on the text directly into this Word document 
using track changes 

2. COMMENT TEMPLATE: capture specific edits using the Comment Template : 
(http://bigdatawg.nist.gov/_uploadfiles/SP1500-1-to-7_comment_template.docx), which includes 
space for Section number, page number, comment, and text edits  

Submit the edited file from either method 1 or 2 to SP1500comments@nist.gov with the volume number 
in the subject line (e.g., Edits for Volume 1.) 

Please contact Wo Chang (wchang@nist.gov) with any questions about the feedback submission process.  

Big Data professionals continue to be welcome to join the NBD-PWG to help craft the work contained in 
the volumes of the NIST Big Data Interoperability Framework. Additional information about the NBD-
PWG can be found at http://bigdatawg.nist.gov.  
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Executive Summary 1 

The NIST Big Data Public Working Group (NBD-PWG) Definitions and Taxonomy Subgroup prepared 2 
this NIST Big Data Interoperability Framework: Volume 1, Definitions to address fundamental concepts 3 
needed to understand the new paradigm for data applications, collectively known as Big Data, and the 4 
analytic processes collectively known as data science. While Big Data has been defined in a myriad of 5 
ways, the shift to a Big Data paradigm occurs when the scale of the data leads to the need for a cluster of 6 
computing and storage resources to provide cost-effective data management. Data science combines 7 
various technologies, techniques, and theories from various fields, mostly related to computer science and 8 
statistics, to obtain actionable knowledge from data. This report seeks to clarify the underlying concepts 9 
of Big Data and data science to enhance communication among Big Data producers and consumers. By 10 
defining concepts related to Big Data and data science, a common terminology can be used among Big 11 
Data practitioners.  12 

The NIST Big Data Interoperability Framework consists of seven volumes, each of which addresses a 13 
specific key topic, resulting from the work of the NBD-PWG. The seven volumes are as follows: 14 

 Volume 1, Definitions 15 
 Volume 2, Taxonomies  16 
 Volume 3, Use Cases and General Requirements 17 
 Volume 4, Security and Privacy  18 
 Volume 5, Architectures White Paper Survey 19 
 Volume 6, Reference Architecture 20 
 Volume 7, Standards Roadmap 21 

The NIST Big Data Interoperability Framework will be released in three versions, which correspond to 22 
the three stages of the NBD-PWG work. The three stages aim to achieve the following: 23 

Stage 1:  Identify the high-level Big Data reference architecture key components, which are 24 
technology, infrastructure, and vendor agnostic 25 

Stage 2:  Define general interfaces between the NIST Big Data Reference Architecture (NBDRA) 26 
components 27 

Stage 3:  Validate the NBDRA by building Big Data general applications through the general interfaces 28 

Potential areas of future work for the Subgroup during stage 2 are highlighted in Section 1.5 of this 29 
volume. The current effort documented in this volume reflects concepts developed within the rapidly 30 
evolving field of Big Data. 31 

 32 
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1 INTRODUCTION 33 

1.1 BACKGROUND 34 

There is broad agreement among commercial, academic, and government leaders about the remarkable 35 
potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common 36 
term used to describe the deluge of data in today’s networked, digitized, sensor-laden, and information-37 
driven world. The availability of vast data resources carries the potential to answer questions previously 38 
out of reach, including the following: 39 

 How can a potential pandemic reliably be detected early enough to intervene?  40 
 Can new materials with advanced properties be predicted before these materials have ever been 41 

synthesized?  42 
 How can the current advantage of the attacker over the defender in guarding against cyber-43 

security threats be reversed?  44 

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth 45 
rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data 46 
analytics, management, transport, and data user spheres.  47 

Despite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of 48 
consensus on some important, fundamental questions continues to confuse potential users and stymie 49 
progress. These questions include the following:  50 

 What attributes define Big Data solutions?  51 
 How is Big Data different from traditional data environments and related applications?  52 
 What are the essential characteristics of Big Data environments?  53 
 How do these environments integrate with currently deployed architectures?  54 
 What are the central scientific, technological, and standardization challenges that need to be 55 

addressed to accelerate the deployment of robust Big Data solutions? 56 

Within this context, on March 29, 2012, the White House announced the Big Data Research and 57 
Development Initiative.1 The initiative’s goals include helping to accelerate the pace of discovery in 58 
science and engineering, strengthening national security, and transforming teaching and learning by 59 
improving the ability to extract knowledge and insights from large and complex collections of digital 60 
data. 61 

Six federal departments and their agencies announced more than $200 million in commitments spread 62 
across more than 80 projects, which aim to significantly improve the tools and techniques needed to 63 
access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 64 
industry, research universities, and nonprofits to join with the federal government to make the most of the 65 
opportunities created by Big Data.  66 

Motivated by the White House initiative and public suggestions, the National Institute of Standards and 67 
Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to 68 
further the secure and effective adoption of Big Data. As one result of NIST’s Cloud and Big Data Forum 69 
held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group 70 
for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap 71 
should define and prioritize Big Data requirements, including interoperability, portability, reusability, 72 
extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would 73 
accelerate the adoption of the most secure and effective Big Data techniques and technology. 74 
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On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive 75 
participation by industry, academia, and government from across the nation. The scope of the NBD-PWG 76 
involves forming a community of interests from all sectors—including industry, academia, and 77 
government—with the goal of developing consensus on definitions, taxonomies, secure reference 78 
architectures, security and privacy, and—from these—a standards roadmap. Such a consensus would 79 
create a vendor-neutral, technology- and infrastructure-independent framework that would enable Big 80 
Data stakeholders to identify and use the best analytics tools for their processing and visualization 81 
requirements on the most suitable computing platform and cluster, while also allowing value-added from 82 
Big Data service providers. 83 

The NIST Big Data Interoperability Framework consists of seven volumes, each of which addresses a 84 
specific key topic, resulting from the work of the NBD-PWG. The seven volumes are as follows: 85 

 Volume 1, Definitions 86 
 Volume 2, Taxonomies  87 
 Volume 3, Use Cases and General Requirements 88 
 Volume 4, Security and Privacy  89 
 Volume 5, Architectures White Paper Survey 90 
 Volume 6, Reference Architecture 91 
 Volume 7, Standards Roadmap 92 

The NIST Big Data Interoperability Framework will be released in three versions, which correspond to 93 
the three stages of the NBD-PWG work. The three stages aim to achieve the following: 94 

Stage 1:  Identify the high-level Big Data reference architecture key components, which are 95 
technology, infrastructure, and vendor agnostic 96 

Stage 2:  Define general interfaces between the NIST Big Data Reference Architecture (NBDRA) 97 
components 98 

Stage 3:  Validate the NBDRA by building Big Data general applications through the general interfaces 99 

Potential areas of future work for the Subgroup during stage 2 are highlighted in Section 1.5 of this 100 
volume. The current effort documented in this volume reflects concepts developed within the rapidly 101 
evolving field of Big Data. 102 

1.2 SCOPE AND OBJECTIVES OF THE DEFINITIONS AND TAXONOMIES SUBGROUP 103 

This volume was prepared by the NBD-PWG Definitions and Taxonomy Subgroup, which focused on 104 
identifying Big Data concepts and defining related terms in areas such as data science, reference 105 
architecture, and patterns. 106 

The aim of this volume is to provide a common vocabulary for those involved with Big Data. For 107 
managers, the terms in this volume will distinguish the concepts needed to understand this changing field. 108 
For procurement officers, this document will provide the framework for discussing organizational needs, 109 
and distinguishing among offered approaches. For marketers, this document will provide the means to 110 
promote solutions and innovations. For the technical community, this volume will provide a common 111 
language to better differentiate the specific offerings. 112 

1.3 REPORT PRODUCTION 113 

Big Data and data science are being used as buzzwords and are composites of many concepts. To better 114 
identify those terms, the NBD-PWG Definitions and Taxonomy Subgroup first addressed the individual 115 
concepts needed in this disruptive field. Then, the two over-arching buzzwordsBig Data and data 116 
scienceand the concepts they encompass were clarified. 117 
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To keep the topic of data and data systems manageable, the Subgroup attempted to limit discussions to 118 
differences affected by the existence of Big Data. Expansive topics such as data type or analytics 119 
taxonomies and metadata were only explored to the extent that there were issues or effects specific to Big 120 
Data. However, the Subgroup did include the concepts involved in other topics that are needed to 121 
understand the new Big Data methodologies. 122 

Terms were developed independent of a specific tool or implementation, to avoid highlighting specific 123 
implementations, and to stay general enough for the inevitable changes in the field. 124 

The Subgroup is aware that some fields, such as legal, use specific language that may differ from the 125 
definitions provided herein. The current version reflects the breadth of knowledge of the Subgroup 126 
members. During the comment period, the broader community is requested to address any domain 127 
conflicts caused by the terminology used in this volume. 128 

1.4 REPORT STRUCTURE 129 

This volume seeks to clarify the meanings of the broad terms Big Data and data science, which are 130 
discussed at length in Section 2. The more elemental concepts and terms that provide additional insights 131 
are discussed in Section 3. Section 4 explores several concepts that are more detailed. This first version of 132 
NIST Big Data Interoperability Framework: Volume 1, Definitions describes some of the fundamental 133 
concepts that will be important to determine categories or functional capabilities that represent 134 
architecture choices.  135 

Tightly coupled information can be found in the other volumes of the NIST Big Data Interoperability 136 
Framework. Volume 2, Taxonomies provides a description of the more detailed components of the NIST 137 
Big Data Reference Architecture (NBDRA) presented in Volume 6, Reference Architecture. Security and 138 
privacy related concepts are described in detail in Volume 4, Security and Privacy. To understand how 139 
these systems are architected to meet users’ needs, the reader is referred to Volume 3, Use Cases and 140 
General Requirements. Volume 7, Standards Roadmap recaps the framework established in Volumes 1 141 
through 6 and discusses NBDRA related standards. Comparing related sections in these volumes will 142 
provide a more comprehensive understanding of the consensus of the NBD-PWG. 143 

1.5 FUTURE WORK ON THIS VOLUME 144 

This volume represents the beginning stage of the NBD-PWG’s effort to provide order and clarity to an 145 
emerging and rapidly changing field. Big Data encompasses a large range of data types, fields of study, 146 
technologies, and techniques. Distilling from the varied viewpoints a consistent, core set of definitions to 147 
frame the discussion has been challenging. However, through discussion of the varied viewpoints a 148 
greater understanding of the Big Data paradigm will emerge. As the field matures, this document will also 149 
need to mature to accommodate innovations in the field. To ensure the concepts are accurate, future 150 
NBD-PWG tasks will consist of the following:  151 

 Defining the different patterns of communications between Big Data resources to better clarify 152 
the different approaches being taken  153 

 Updating Volume 1 taking into account the efforts of other working groups such as International 154 
Organization for Standardization (ISO) Joint Technical Committee 1 (JTC 1) and the Transaction 155 
Processing Performance Council.  156 

 Improve the discussions of governance and data ownership 157 
 Develop the Management section 158 
 Develop the Security and Privacy section 159 
 Add a discussion of the value of data  160 

 161 
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2 BIG DATA AND DATA SCIENCE DEFINITIONS 162 

The rate of growth of data generated and stored has been increasing exponentially. In a 1965 paper2, 163 
Gordon Moore estimated that the density of transistors on an integrated circuit board was doubling every 164 
two years. Known as “Moore’s Law”, this rate of growth has been applied to all aspects of computing, 165 
from clock speeds to memory. The growth rates of data volumes are considered faster than Moore’s Law, 166 
with data volumes more than doubling every eighteen months. This data explosion is creating 167 
opportunities for new ways of combining and using data to find value, as well as providing significant 168 
challenges due to the size of the data being managed and analyzed. One significant shift is in the amount 169 
of unstructured data. Historically, structured data has typically been the focus of most enterprise analytics, 170 
and has been handled through the use of the relational data model. Recently, the quantity of unstructured 171 
data, such as micro-texts, web pages, relationship data, images and videos, has exploded and the trend 172 
indicates an increase in the incorporation of unstructured data to generate value. The central benefit of 173 
Big Data analytics is the ability to process large amounts and various types of information. Big Data does 174 
not imply that the current data volumes are simply “bigger” than before, or bigger than current techniques 175 
can efficiently handle. The need for greater performance or efficiency happens on a continual basis. 176 
However, Big Data represents a fundamental change in the architecture needed to efficiently handle 177 
current datasets.  178 

In the evolution of data systems, there have been a number of times when the need for efficient, cost 179 
effective data analysis has forced a change in existing technologies. For example, the move to a relational 180 
model occurred when methods to reliably handle changes to structured data led to the shift toward a data 181 
storage paradigm that modeled relational algebra. That was a fundamental shift in data handling. The 182 
current revolution in technologies referred to as Big Data has arisen because the relational data model can 183 
no longer efficiently handle all the current needs for analysis of large and often unstructured datasets. It is 184 
not just that data is bigger than before, as it has been steadily getting larger for decades. The Big Data 185 
revolution is instead a one-time fundamental shift in architecture, just as the shift to the relational model 186 
was a one-time shift. As relational databases evolved to greater efficiencies over decades, so too will Big 187 
Data technologies continue to evolve. Many of the conceptual underpinnings of Big Data have been 188 
around for years, but the last decade has seen an explosion in their maturation and application to scaled 189 
data systems. 190 

The term Big Data has been used to describe a number of concepts, in part because several distinct 191 
aspects are consistently interacting with each other. To understand this revolution, the interplay of the 192 
following four aspects must be considered: the characteristics of the datasets, the analysis of the datasets, 193 
the performance of the systems that handle the data, and the business considerations of cost effectiveness.  194 

In the following sections, the two broad concepts, Big Data and data science, are broken down into 195 
specific individual terms and concepts. 196 

2.1 BIG DATA DEFINITIONS 197 

Big Data refers to the inability of traditional data architectures to efficiently handle the new datasets. 198 
Characteristics of Big Data that force new architectures are volume (i.e., the size of the dataset) and 199 
variety (i.e., data from multiple repositories, domains, or types), and the data in motion characteristics of 200 
velocity (i.e., rate of flow) and variability (i.e., the change in other characteristics). These 201 
characteristics—volume, variety, velocity, and variability—are known colloquially as the ‘Vs’ of Big 202 
Data and are further discussed in Section 3. Each of these characteristics influences the overall design of a 203 
Big Data system, resulting in different data system architectures or different data lifecycle process 204 
orderings to achieve needed efficiencies.  205 
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Big Data consists of extensive datasetsprimarily in the characteristics of volume, 206 
variety, velocity, and/or variabilitythat require a scalable architecture for efficient 207 
storage, manipulation, and analysis. 208 

Note that this definition contains the interplay between the characteristics of the data and the need for a 209 
system architecture that can scale to achieve the needed performance and cost efficiency. There are two 210 
fundamentally different methods for system scaling, often described metaphorically as “vertical” or 211 
“horizontal” scaling. Vertical scaling implies increasing the system parameters of processing speed, 212 
storage, and memory for greater performance. This approach is limited by physical capabilities whose 213 
improvements have been described by Moore’s Law, requiring ever more sophisticated elements (e.g., 214 
hardware, software) that add time and expense to the implementation. The alternate method is to use 215 
horizontal scaling, to make use of a cluster of individual (usually commodity) resources integrated to act 216 
as a single system. It is this horizontal scaling that is at the heart of the Big Data revolution. 217 

The Big Data paradigm consists of the distribution of data systems across horizontally 218 
coupled, independent resources to achieve the scalability needed for the efficient 219 
processing of extensive datasets. 220 

This new paradigm leads to a number of conceptual definitions that suggest Big Data exists when the 221 
scale of the data causes the management of the data to be a significant driver in the design of the system 222 
architecture. This definition does not explicitly refer to the horizontal scaling in the Big Data paradigm. 223 

As stated above, fundamentally, the Big Data paradigm is a shift in data system architectures from 224 
monolithic systems with vertical scaling (i.e., adding more power, such as faster processors or disks, to 225 
existing machines) into a parallelized, “horizontally scaled”, system (i.e., adding more machines to the 226 
available collection) that uses a loosely coupled set of resources in parallel. This type of parallelization 227 
shift began over 20 years ago in the simulation community, when scientific simulations began using 228 
massively parallel processing (MPP) systems.  229 

Massively parallel processing refers to a multitude of individual processors working in 230 
parallel to execute a particular program.  231 

In different combinations of splitting the code and data across independent processors, computational 232 
scientists were able to greatly extend their simulation capabilities. This, of course, introduced a number of 233 
complications in such areas as message passing, data movement, latency in the consistency across 234 
resources, load balancing, and system inefficiencies, while waiting on other resources to complete their 235 
computational tasks.  236 

The Big Data paradigm of today is similar. Data systems need a level of extensibility that matches the 237 
scaling in the data. To get that level of extensibility, different mechanisms are needed to distribute data 238 
and data retrieval processes across loosely coupled resources.  239 

While the methods to achieve efficient scalability across resources will continually evolve, this paradigm 240 
shift (in analogy to the prior shift in the simulation community) is a one-time occurrence. Eventually, a 241 
new paradigm shift will likely occur beyond this distribution of a processing or data system that spans 242 
multiple resources working in parallel. That future revolution will need to be described with new 243 
terminology.  244 

Big Data focuses on the self-referencing viewpoint that data is big because it requires scalable systems to 245 
handle it. Conversely, architectures with better scaling have come about because of the need to handle Big 246 
Data. It is difficult to delineate a size requirement for a dataset to be considered Big Data. Data is usually 247 
considered “big” if the use of new scalable architectures provides a cost or performance efficiency over 248 
the traditional vertically scaled architectures (i.e., if similar performance cannot be achieved in a 249 
traditional, single platform computing resource.) This circular relationship between the characteristics of 250 
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the data and the performance of data systems leads to different definitions for Big Data if only one aspect 251 
is considered. 252 

Some definitions for Big Data focus on the systems innovations required because of the characteristics of 253 
Big Data.  254 

Big Data engineering includes advanced techniques that harness independent resources 255 
for building scalable data systems when the characteristics of the datasets require new 256 
architectures for efficient storage, manipulation, and analysis. 257 

Once again the definition is coupled, so that Big Data engineering is used when the characteristics of the 258 
data require it. New engineering techniques in the data layer have been driven by the growing prominence 259 
of datasets that cannot be handled efficiently in a traditional relational model. The need for scalable 260 
access in structured data has led to software built on the key-value pair paradigm. The rise in importance 261 
of document analysis has spawned a document-oriented database paradigm, and the increasing 262 
importance of relationship data has led to efficiencies in the use of graph-oriented data storage. 263 

The new non-relational model database paradigms are typically referred to as NoSQL (Not Only or No 264 
Structured Query Language [SQL]) systems, which are further discussed in Section 3. The problem with 265 
identifying Big Data storage paradigms as NoSQL is, first, that it describes the storage of data with 266 
respect to a set theory-based language for query and retrieval of data, and, second, that there is a growing 267 
capability in the application of the SQL query language against the new non-relational data repositories. 268 
While NoSQL is in such common usage that it will continue to refer to the new data models beyond the 269 
relational model, it is hoped the term itself will be replaced with a more suitable term, since it is unwise to 270 
name a set of new storage paradigms with respect to a query language currently in use against that 271 
storage.  272 

Non-relational models, frequently referred to as NoSQL, refer to logical data models 273 
that do not follow relational algebra for the storage and manipulation of data. 274 

Another related engineering technique is the federated database system, which is related to the variety 275 
characteristic of Big Data.  276 

A federated database system is a type of meta-database management system, which 277 
transparently maps multiple autonomous database systems into a single federated 278 
database. 279 

A federated database is thus a database system comprised of underlying database systems. Big Data 280 
systems can likewise pull a variety of data from many sources, but the underlying repositories do not all 281 
have to conform to the relational model. 282 

Note that for systems and analysis processes, the Big Data paradigm shift also causes changes in the 283 
traditional data lifecycle processes. One description of the end-to-end data lifecycle categorizes the 284 
process steps as collection, preparation, analysis, and action. Different Big Data use cases can be 285 
characterized in terms of the dataset characteristics and in terms of the time window for the end-to-end 286 
data lifecycle. Dataset characteristics change the data lifecycle processes in different ways, for example in 287 
the point in the lifecycle at which the data is placed in persistent storage. In a traditional relational model, 288 
the data is stored after preparation (for example, after the extract-transform-load and cleansing processes). 289 
In a high velocity use case, the data is prepared and analyzed for alerting, and only then is the data (or 290 
aggregates of the data) given a persistent storage. In a volume use case, the data is often stored in the raw 291 
state in which it was produced—before being cleansed and organized (sometimes referred to as extract-292 
load-transform). The consequence of persistence of data in its raw state is that a schema or model for the 293 
data is only applied when the data is retrieved for preparation and analysis. This Big Data concept is 294 
described as schema-on-read. 295 
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Schema-on-read is the application of a data schema through preparation steps such as 296 
transformations, cleansing, and integration at the time the data is read from the 297 
database.  298 

Another concept of Big Data is often referred to as moving the processing to the data, not the data to the 299 
processing.  300 

Computational portability is the movement of the computation to the location of the data. 301 

The implication is that data is too extensive to be queried and moved into another resource for analysis, so 302 
the analysis program is instead distributed to the data-holding resources, with only the results being 303 
aggregated on a remote resource. This concept of data locality is actually a critical aspect of parallel data 304 
architectures. Additional system concepts are the interoperability (ability for tools to work together), 305 
reusability (ability to apply tools from one domain to another), and extendibility (ability to add or modify 306 
existing tools for new domains). These system concepts are not specific to Big Data, but their presence in 307 
Big Data can be understood in the examination of a Big Data reference architecture, which is discussed in 308 
NIST Big Data Interoperability Framework: Volume 6, Reference Architecture of this series. 309 

Additional concepts used in reference to the term Big Data refer to changes in analytics, which will be 310 
discussed in Section 2.2. A number of other terms (particularly terms starting with the letter V) are also 311 
used, several of which refer to the data science process or its benefit, instead of new Big Data 312 
characteristics. Some of these additional terms include veracity (i.e., accuracy of the data), value (i.e., 313 
value of the analytics to the organization), volatility (i.e., tendency for data structures to change over 314 
time), and validity (i.e., appropriateness of the data for its intended use). While these characteristics and 315 
othersincluding quality control, metadata, and data provenancelong pre-dated Big Data, their impact 316 
is still important in Big Data systems. Several of these terms are discussed with respect to Big Data 317 
analytics in Section 3.4. 318 

Essentially, Big Data refers to the extensibility of data repositories and data processing across resources 319 
working in parallel, in the same way the compute-intensive simulation community embraced massively 320 
parallel processing two decades ago. By working out methods for communication among resources, the 321 
same scaling is now available to data-intensive applications. 322 

2.2 DATA SCIENCE DEFINITIONS 323 

In its purest form, data science is the fourth paradigm of science, following theory, experiment, and 324 
computational science. The fourth paradigm is a term coined by Dr. Jim Gray in 2007. It refers to the 325 
conduct of data analysis as an empirical science, learning directly from data itself. Data science as a 326 
paradigm would refer to the formulation of a hypothesis, the collection of the data—new or pre-327 
existing—to address the hypothesis, and the analytical confirmation or denial of the hypothesis (or the 328 
determination that additional information or study is needed.) In many data science projects, the raw data 329 
is browsed first, which informs a hypothesis, which is then investigated. As in any experimental science, 330 
the end result could be that the original hypothesis itself needs to be reformulated. The key concept is that 331 
data science is an empirical science, performing the scientific process directly on the data. Note that the 332 
hypothesis may be driven by a business need, or can be the restatement of a business need in terms of a 333 
technical hypothesis.  334 

The data science paradigm is extraction of actionable knowledge directly from data 335 
through a process of discovery, hypothesis, and hypothesis testing. 336 

Data science can be understood as the activities happening in the processing layer of the system 337 
architecture, against data stored in the data layer, in order to extract knowledge from the raw data through 338 
the complete data lifecycle.  339 
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The data lifecycle is the set of processes that transform raw data into actionable 340 
knowledge. 341 

Traditionally, the term analytics has been used as one of the steps in the data lifecycle of collection, 342 
preparation, analysis, and action. 343 

Analytics is the synthesis of knowledge from information. 344 

With the new Big Data paradigm, analytics are no longer separable from the data model and the 345 
distribution of that data across parallel resources. When structured data was almost exclusively stored as 346 
organized information in a relational model, the analytics could be designed for this structure. While the 347 
working definition of the data science paradigm refers to learning directly from data, in the Big Data 348 
paradigm this learning must implicitly involve all steps in the data lifecycle, with analytics being only a 349 
subset.  350 

Data science is the empirical synthesis of actionable knowledge from raw data through 351 
the complete data lifecycle process. 352 

Data science across the entire data lifecycle now incorporates principles, techniques, and methods from 353 
many disciplines and domains, including the analytics domains of mathematics, data mining (specifically 354 
machine learning and pattern recognition), statistics, operations research, and visualization, along with the 355 
domains of systems, software, and network engineering. Data scientists and data science teams solve 356 
complex data problems by employing deep expertise in one or more of these disciplines, in the context of 357 
business strategy, and under the guidance of domain knowledge. Personal skills in communication, 358 
presentation, and inquisitiveness are also very important given the complexity of interactions within Big 359 
Data systems. 360 

A data scientist is a practitioner who has sufficient knowledge in the overlapping regimes 361 
of business needs, domain knowledge, analytical skills, and software and systems 362 
engineering to manage the end-to-end data processes through each stage in the data 363 
lifecycle. 364 

While this full collection of skills can be present in a single individual, it is also possible that these skills, 365 
as shown in Figure 1, are covered in the members of a team. 366 

 367 

Figure 1: Skills Needed in Data Science 368 

Data science is not solely concerned with analytics, but also with the end-to-end experimental lifecycle, 369 
where the data system is essentially the scientific equipment. The implication is that the data scientist 370 
must be aware of the sources and provenance of the data, the appropriateness and accuracy of the 371 
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transformations on the data, the interplay between the transformation algorithms and processes, and the 372 
data storage mechanisms. This end-to-end overview role ensures that everything is performed correctly to 373 
meaningfully address the hypothesis. These analytics concepts are discussed further in Section 3.4. 374 

Data science is increasingly used to influence business decisions. In Big Data systems, identifying a 375 
correlation is often sufficient for a business to take action. As a simple example, if it can be determined 376 
that using the color blue on a website leads to greater sales than using green, then this correlation can be 377 
used to improve the business. The reason for the preference is not neededit is enough to determine 378 
correlation. 379 

Several issues are currently being debated within the data science community, two of which are data 380 
sampling, and the idea that more data is superior to better algorithms  381 

Data sampling, a central concept of statistics, involves the selection of a subset of data from the larger 382 
data population. The subset of data can be used as input for analytical processes, to determine 383 
methodology to be used for experimental procedures, or to address questions. For example, it is possible 384 
to calculate the data needed to determine an outcome for an experimental procedure (e.g., during a 385 
pharmaceutical clinical trial).  386 

When the data mining community began, the emphasis was typically on re-purposed data (i.e., data used 387 
to train models was sampled from a larger dataset that was originally collected for another purpose). The 388 
often-overlooked critical step was to ensure that the analytics were not prone to over-fitting (i.e., the 389 
analytical pattern matched the data sample but did not work well to answer questions of the overall data 390 
population). In the new Big Data paradigm, it is implied that data sampling from the overall data 391 
population is no longer necessary since the Big Data system can theoretically process all the data without 392 
loss of performance. However, even if all of the available data is used, it still only represents a population 393 
subset whose behaviors led them to produce the data, which might not be the true population of interest. 394 
For example, studying Twitter data to analyze people’s behaviors does not represent all people, as not 395 
everyone uses Twitter. While less sampling may be used in data science processes, it is important to be 396 
aware of the implicit data sampling when trying to address business questions. 397 

The assertion that more data is superior to better algorithms implies that better results can be achieved by 398 
analyzing larger samples of data rather that refining the algorithms used in the analytics. The heart of this 399 
debate states that a few bad data elements are less likely to influence the analytical results in a large 400 
dataset than if errors are present in a small sample of that dataset. If the analytics needs are correlation 401 
and not causation, then this assertion is easier to justify. Outside the context of large datasets in which 402 
aggregate trending behavior is all that matters, the data quality rule remains “garbage-in, garbage-out”, 403 
where you cannot expect accurate results based on inaccurate data. 404 

For descriptive purposes, analytics activities can be broken into different categories, including discovery, 405 
exploratory analysis, correlation analysis, predictive modeling, and machine learning. Again, these 406 
analytics categories are not specific to Big Data, but some have gained more visibility due to their greater 407 
application in data science. 408 

Data science is tightly linked to Big Data, and refers to the management and execution of the end-to-end 409 
data processes, including the behaviors of the data system. As such, data science includes all of analytics, 410 
but analytics does not include all of data science. 411 

2.3 OTHER BIG DATA DEFINITIONS 412 

A number of Big Data definitions have been suggested as efforts have been made to understand the extent 413 
of this new field. Several Big Data concepts, discussed in previous sections, were observed in a sample of 414 
definitions taken from blog posts 3 4 5 6. The sample of formal and informal definitions offer a sense of the 415 
spectrum of concepts applied to the term Big Data. The sample of Big Data concepts and definitions are 416 
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aligned in Table 1. The NBD-PWG’s definition is closest to the Gartner definition, with additional 417 
emphasis that the horizontal scaling is the element that provides the cost efficiency. The Big Data 418 
concepts and definitions in Table 1 are not comprehensive, but rather illustrate the inter-related concepts 419 
attributed to the catch-all term Big Data. 420 

Table 1: Sampling of Concepts Attributed to Big Data 421 

Concept Author Definition 

4Vs (Volume, 
Variety, 
Velocity, and 
Variability) 
and 
Engineering 

Gartner7,8 “Big data is high-volume, high-velocity and high-variety information assets 
that demand cost-effective, innovative forms of information processing for 
enhanced insight and decision making.” 

Volume Techtarget 9 “Although Big data doesn't refer to any specific quantity, the term is often 
used when speaking about petabytes and exabytes of data.” 

Oxford 
English 
Dictionary 
(OED)10 

“big data n. Computing (also with capital initials) data of a very large size, 
typically to the extent that its manipulation and management present 
significant logistical challenges; (also) the branch of computing involving 
such data.” 

Bigger Data Annette 
Greiner9 

“Big data is data that contains enough observations to demand unusual 
handling because of its sheer size, though what is unusual changes over time 
and varies from one discipline to another.” 

Not Only 
Volume 

Quentin 
Hardy9 

“What’s ‘big’ in big data isn’t necessarily the size of the databases, it’s the big 
number of data sources we have, as digital sensors and behavior trackers 
migrate across the world.” 

Chris 
Neumann9 

“…our original definition was a system that (1) was capable of storing 10 TB 
of data or more … As time went on, diversity of data started to become more 
prevalent in these systems (particularly the need to mix structured and 
unstructured data), which led to more widespread adoption of the “3 Vs” 
(volume, velocity, and variety) as a definition for big data.” 

Big Data 
Engineering 

IDC11 [16] “Big data technologies describe a new generation of technologies and 
architectures, designed to economically extract value from very large volumes 
of a wide variety of data, by enabling high-velocity capture, discovery, and/or 
analysis.” 

Hal Varian9  “Big data means data that cannot fit easily into a standard relational database.” 

McKinsey12 “Big Data refers to a dataset whose size is beyond the ability of typical 
database software tools to capture, store, manage, and analyze.” 

Less Sampling John 
Foreman9 

“Big data is when your business wants to use data to solve a problem, answer 
a question, produce a product, etc., …crafting a solution to the problem that 
leverages the data without simply sampling or tossing out records.” 

Peter 
Skomoroch9 

“Big data originally described the practice in the consumer Internet industry of 
applying algorithms to increasingly large amounts of disparate data to solve 
problems that had suboptimal solutions with smaller datasets.” 

New Data 
Types 

Tom 
Davenport13 

“The broad range of new and massive data types that have appeared over the 
last decade or so.” 

Mark van 
Rijmenam9 

“Big data is not all about volume, it is more about combining different data 
sets and to analyze it in real-time to get insights for your organization. 
Therefore, the right definition of big data should in fact be: mixed data.” 
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Concept Author Definition 

Analytics Ryan 
Swanstrom9 

“Big data used to mean data that a single machine was unable to handle. Now 
big data has become a buzzword to mean anything related to data analytics or 
visualization.” 

Data Science Joel Gurin9 “Big data describes datasets that are so large, complex, or rapidly changing 
that they push the very limits of our analytical capability.” 

Josh 
Ferguson9 

“Big data is the broad name given to challenges and opportunities we have as 
data about every aspect of our lives becomes available. It’s not just about data 
though; it also includes the people, processes, and analysis that turn data into 
meaning.” 

Value Harlan Harris9 “To me, ‘big data’ is the situation where an organization can (arguably) say 
that they have access to what they need to reconstruct, understand, and model 
the part of the world that they care about.” 

Jessica 
Kirkpatrick9 

“Big data refers to using complex datasets to drive focus, direction, and 
decision making within a company or organization.” 

Hilary Mason9 “Big data is just the ability to gather information and query it in such a way 
that we are able to learn things about the world that were previously 
inaccessible to us.” 

Gregory 
Piatetsky-
Shapiro9 

“The best definition I saw is, “Data is big when data size becomes part of the 
problem.” However, this refers to the size only. Now the buzzword “big data” 
refers to the new data-driven paradigm of business, science and technology, 
where the huge data size and scope enables better and new services, products, 
and platforms.” 

Cultural 
Change 

Drew 
Conway9 

“Big data, which started as a technological innovation in distributed 
computing, is now a cultural movement by which we continue to discover how 
humanity interacts with the world—and each other—at large-scale.” 

Daniel 
Gillick9 

“‘Big data’ represents a cultural shift in which more and more decisions are 
made by algorithms with transparent logic, operating on documented 
immutable evidence. I think ‘big’ refers more to the pervasive nature of this 
change than to any particular amount of data.” 

Cathy O’Neil9 “‘Big data’ is more than one thing, but an important aspect is its use as a 
rhetorical device, something that can be used to deceive or mislead or 
overhype.” 

 422 

 423 
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3 BIG DATA FEATURES 424 

The diversity of Big Data concepts discussed in Section 2 is similarly reflected in the discussion of Big 425 
Data features in Section 3. Some Big Data terms and concepts are discussed in Section 3 to understand 426 
new aspects brought about by the Big Data paradigm in the context of existing data architecture and 427 
analysis context.  428 

3.1 DATA ELEMENTS AND METADATA 429 

Individual data elements have not changed with Big Data and are not discussed in detail in this document. 430 
For additional information on data types, readers are directed to the ISO standard ISO/IEC 11404:2007 431 
General Purpose Datatypes14, and, as an example, its extension into healthcare information data types in 432 
ISO 21090:2011 Health Informatics15. 433 

One important concept to Big Data is metadata, which is often described as “data about data.” Metadata 434 
describes additional information about the data such as how and when data was collected and how it has 435 
been processed. Metadata should itself be viewed as data with all the requirements for tracking, change 436 
management, and security. Many standards are being developed for metadata, for general metadata 437 
coverage (e.g., ISO/IEC 11179-x16) and discipline specific metadata (e.g., ISO 19115-x17 for geospatial 438 
data).  439 

Metadata that describes the history of a dataset is called its provenance, which is discussed in Section 3.6. 440 
As open data (data available to others) and linked data (data that is connected to other data) become the 441 
norm, it is increasingly important to have information about how data was collected, transmitted, and 442 
processed. Provenance type of metadata guides users to correct data utilization when the data is 443 
repurposed from its original collection process in an effort to extract additional value. 444 

Semantic metadata, another type of metadata, refers to the definitional description of a data element to 445 
assist with proper interpretation. An ontology can be conceptualized as a graphic model, representing a 446 
semantic relationship between entities. Ontologies are semantic models constrained to follow different 447 
levels of logic models. Ontologies and semantic models predated Big Data and not discussed in depth this 448 
document. Ontologies can be very general or extremely domain specific in nature. A number of 449 
mechanisms exist for implementing these unique definitional descriptions, and the reader is referred to the 450 
World Wide Web Consortium (W3C) efforts on the semantic web1819 for additional information. Semantic 451 
data is important in the new Big Data Paradigm since the Semantic Web represents a Big Data attempt to 452 
provide cross-cutting meanings for terms. Again, semantic metadata is especially important for linked 453 
data efforts. 454 

Taxonomies represent in some sense metadata about data element relationships. Taxonomy is a 455 
hierarchical relationship between entities, where a data element is broken down into smaller component 456 
parts. While these concepts are important, they predated the Big Data paradigm shift. 457 

3.2 DATA RECORDS AND NON-RELATIONAL MODELS 458 

Data elements are collected into records that describe a particular observation, event, or transaction. 459 
Previously, most of the data in business systems was structured data, where each record was consistently 460 
structured and could be described efficiently in a relational model. Records are conceptualized as the 461 
rows in a table where data elements are in the cells. Unstructured data types, such as text, image, video, 462 
and relationship data, have been increasing in both volume and prominence. While modern relational 463 
databases tend to have support for these types of data elements, their ability to directly analyze, index, and 464 
process them has tended to be both limited and accessed via non-standard SQL extensions. The need to 465 
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analyze unstructured or semi-structured data has been present for many years. However, the Big Data 466 
paradigm shift has increased the emphasis on the value of unstructured or relationship data, and also on 467 
different engineering methods that can handle data more efficiently.  468 

Again, semantic metadata is, Big Data Engineering refers to the new ways data is stored in records. In 469 
some cases the records are still in the concept of a table structure. One storage paradigm is a key-value 470 
structure, with a record consisting of a key and a string of data together in the value. The data is retrieved 471 
through the key, and the non-relational database software handles accessing the data in the value. This can 472 
be viewed as a subset/simplification of a relational database table with a single index field and column. A 473 
variant on this is the document store, where the document has multiple value fields, any of which can be 474 
used as the index/key. The difference from the relational table model is that the set of documents do not 475 
all need to have same value fields. 476 

Another type of new Big Data record storage is in a graphical model. A graphical model represents the 477 
relationship between data elements. The data elements are nodes, and the relationship is represented as a 478 
link between nodes. Graph storage models represent each data element as a series of subject, predicate, 479 
and object triples. Often, the available types of objects and relationships are described via ontologies as 480 
discussed above. 481 

Another data element relationship concept that is not new in the Big Data paradigm shift is the presence 482 
of complexity between the data elements. There are systems where data elements cannot be analyzed 483 
outside the context of other data elements. This is evident, for example, in the analytics for the Human 484 
Genome Project, where it is the relationship between the elements and their position and proximity to 485 
other elements that matters. The term complexity is often attributed to Big Data, but it refers to this inter-486 
relationship between data elements or across data records, independent of whether the dataset has the 487 
characteristics of Big Data 488 

3.3 DATASET CHARACTERISTICS AND STORAGE 489 

Data records are grouped into datasets, which can have the Big Data characteristics of volume, velocity, 490 
variety, and variability. Dataset characteristics can refer to the data itself, or data at rest, while 491 
characteristics of the data that is traversing a network or temporarily residing in computer memory to be 492 
read or updated is referred to as data in motion, which is discussed in Section 3.4. 493 

Data at Rest: Typical characteristics of data at rest that are notably different in the era of Big Data are 494 
volume and variety. Volume is the characteristic of data at rest that is most associated with Big Data. 495 
Estimates show that the amount of data in the world doubles every two years.20 Should this trend 496 
continue, by 2020 there would be 500 times the amount of data as existed in 2011. The sheer volume of 497 
the data is colossal. The data volumes have stimulated new ways for scalable storage across a collection 498 
of horizontally coupled resources, as described in Section 2.1.  499 

The second characteristic of data at rest is the increasing need to use a variety of data, meaning the data 500 
represents a number of data domains and a number of data types. Traditionally, a variety of data was 501 
handled through transformations or pre-analytics to extract features that would allow integration with 502 
other data. The wider range of data formats, logical models, timescales, and semantics, which is desirous 503 
to use in analytics, complicates the integration of the variety of data. For example, data to be integrated 504 
could be text from social networks, image data, or a raw feed directly from a sensor source. To deal with 505 
a wider range of data formats, a federated database model was designed as a database across the 506 
underlying databases. Data to be integrated for analytics could now be of such volume that it cannot be 507 
moved to integrate, or it may be that some of the data is not under control of the organization creating the 508 
data system. In either case, the variety of Big Data forces a range of new Big Data engineering solutions 509 
to efficiently and automatically integrate data that is stored across multiple repositories, in multiple 510 
formats, and in multiple logical data models. 511 
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Big Data engineering has spawned data storage models that are more efficient for unstructured data than 512 
the traditional relational model, causing a derivative issue for the mechanisms to integrate this data. New 513 
scalable techniques have arisen to manage and manipulate Big Data not stored in traditional expensive 514 
high-performance “vertically” scaled systems, but rather spread across a number of less expensive 515 
resources. For example, the document store was developed specifically to support the idea of storing and 516 
indexing heterogeneous data in a common repository for analysis. New types of non-relational storage for 517 
data records are discussed below.  518 

Shared-disk File Systems: These approaches, such as Storage Area Networks (SANs) and Network 519 
Attached Storage (NAS), use a single storage pool, which is accessed from multiple computing resources. 520 
While these technologies solved many aspects of accessing very large datasets from multiple nodes 521 
simultaneously, they suffered from issues related to data locking and updates and, more importantly, 522 
created a performance bottleneck (from every input/output [I/O] operation accessing the common storage 523 
pool) that limited their ability to scale up to meet the needs of many Big Data applications. These 524 
limitations were overcome through the implementation of fully distributed file systems.  525 

Distributed File Systems: In distributed file storage systems, multi-structured (object) datasets are 526 
distributed across the computing nodes of the server cluster(s). The data may be distributed at the 527 
file/dataset level, or more commonly, at the block level, allowing multiple nodes in the cluster to interact 528 
with different parts of a large file/dataset simultaneously. Big Data frameworks are frequently designed to 529 
take advantage of data locality to each node when distributing the processing, which avoids any need to 530 
move the data between nodes. In addition, many distributed file systems also implement file/block level 531 
replication where each file/block is stored multiple times on different machines for both 532 
reliability/recovery (data is not lost if a node in the cluster fails), as well as enhanced data locality. Any 533 
type of data and many sizes of files can be handled without formal extract, transformation, and load 534 
conversions, with some technologies performing markedly better for large file sizes.  535 

Distributed Computing: The popular framework for distributed computing consists of a storage layer and 536 
processing layer combination that implements a multiple-class, algorithm-programming model. Low cost 537 
servers supporting the distributed file system that stores the data can dramatically lower the storage costs 538 
of computing on a large scale of data (e.g., web indexing). MapReduce is the default processing 539 
component in data-distributed computing. Processing results are typically then loaded into an analysis 540 
environment.  541 

The use of inexpensive servers is appropriate for slower, batch-speed Big Data applications, but do not 542 
provide good performance for applications requiring low latency processing. The use of basic MapReduce 543 
for processing places limitations on updating or iterative access to the data during computation. Bulk 544 
Synchronous Parallelism systems or newer MapReduce developments can be used when repeated 545 
updating is a requirement. Improvements and “generalizations” of MapReduce have been developed that 546 
provide additional functions lacking in the older technology, including fault tolerance, iteration flexibility, 547 
elimination of middle layer, and ease of query.  548 

Resource Negotiation: The common distributed computing system has little in the way of built-in data 549 
management capabilities. In response, several technologies have been developed to provide the necessary 550 
support functions, including operations management, workflow integration, security, and governance. Of 551 
special importance to resource management development, are new features for supporting additional 552 
processing models (other than MapReduce) and controls for multi-tenant environments, higher 553 
availability, and lower latency applications.  554 

In a typical implementation, the resource manager is the hub for several node managers. The client or user 555 
accesses the resource manager which in turn launches a request to an application master within one or 556 
many node managers. A second client may also launch its own requests, which will be given to other 557 
application masters within the same or other node managers. Tasks are assigned a priority value allocated 558 
based on available CPU and memory, and provided the appropriate processing resource in the node.  559 
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Data movement is normally handled by transfer and application program interface (API) technologies 560 
other than the resource manager. In rare cases, peer-to-peer (P2P) communications protocols can also 561 
propagate or migrate files across networks at scale, meaning that technically these P2P networks are also 562 
distributed file systems. The largest social networks, arguably some of the most dominant users of Big 563 
Data, move binary large objects (BLOBs) of over 1 gigabyte (GB) in size internally over large numbers of 564 
computers via such technologies. The internal use case has been extended to private file synchronization, 565 
where the technology permits automatic updates to local folders whenever two end users are linked 566 
through the system.  567 

In external use cases, each end of the P2P system contributes bandwidth to the data movement, making 568 
this currently the fastest way to leverage documents to the largest number of concurrent users. For 569 
example, NASA (U.S. National Aeronautics and Space Administration) uses this technology to make 570 
3GB images available to the public. However, any large bundle of data (e.g., video, scientific data) can be 571 
quickly distributed with lower bandwidth cost.  572 

There are additional aspects of Big Data that are changing rapidly and are not fully explored in this 573 
document, including cluster management and other mechanisms for providing communication among the 574 
cluster resources holding the data in the non-relational models. Discussion of the use of multiple tiers of 575 
storage (e.g., in-memory, cache, solid state drive, hard drive, network drive) in the newly emerging 576 
software defined storage can be found in other industry publications. Software defined storage is the use 577 
of software to determine the dynamic allocation of tiers of storage to reduce storage costs while 578 
maintaining the required data retrieval performance. 579 

3.4 DATA IN MOTION 580 

Another important characteristic of Big Data is the time window in which the analysis can take place. 581 
Data in motion is processed and analyzed in real time, or near-real time, and has to be handled in a very 582 
different way than data at rest (i.e., persisted data). Data in motion tends to resemble event-processing 583 
architectures, and focuses on real-time or operational intelligence applications.  584 

Typical characteristics of data in motion that are significantly different in the era of Big Data are velocity 585 
and variability. The velocity is the rate of flow at which the data is created, stored, analyzed, and 586 
visualized. Big Data velocity means a large quantity of data is being processed in a short amount of time. 587 
In the Big Data era, data is created and passed on in real time or near real time. Increasing data flow rates 588 
create new challenges to enable real- or near real-time data usage. Traditionally this concept has been 589 
described as streaming data. While these aspects are new for some industries, other industries (e.g., 590 
telecommunications) have processed high volume and short time interval data for years. However, the 591 
new in-parallel scaling approaches do add new Big Data engineering options for efficiently handling this 592 
data. 593 

The second characteristic for data in motion is variability, which refers to any change in data over time, 594 
including the flow rate, the format, or the composition. Given that many data processes generate a surge 595 
in the amount of data arriving in a given amount of time, new techniques are needed to efficiently handle 596 
this data. The data processing is often tied up with the automatic provisioning of additional virtualized 597 
resources in a cloud environment. Detailed discussions of the techniques used to process data can be 598 
found in other industry publications that focus on operational cloud architectures.21 22 Early Big Data 599 
systems built by Internet search providers and others were frequently deployed on bare metal to achieve 600 
the best efficiency at distributing I/O across the clusters and multiple storage devices. While cloud (i.e., 601 
virtualized) infrastructures were frequently used to test and prototype Big Data deployments, there are 602 
recent trends, due to improved efficiency in I/O virtualization infrastructures, of production solutions 603 
being deployed on cloud or Infrastructure-as-a-Service (IaaS) platforms. A high velocity system with high 604 
variability may be deployed on a cloud infrastructure, because of the cost and performance efficiency of 605 
being able to add or remove nodes to handle the peak performance. Being able to release those resources 606 
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when they are no longer needed provides significant cost savings for operating this type of Big Data 607 
system. Very large implementations and in some cases cloud providers are now implementing this same 608 
type of elastic infrastructure on top of their physical hardware. This is especially true for organizations 609 
that already need extensive infrastructure but simply need to balance resources across application 610 
workloads that can vary. 611 

3.5 DATA SCIENCE LIFECYCLE MODEL FOR BIG DATA 612 

As was introduced in Section 2.1, the data lifecycle consists of the following four stages: 613 

1. Collection: This stage gathers and stores data in its original form (i.e., raw data.) 614 
2. Preparation: This stage involves the collection of processes that convert raw data into cleansed, 615 

organized information. 616 
3. Analysis: This stage involves the techniques that produce synthesized knowledge from organized 617 

information. 618 
4. Action: This stage involves processes that use the synthesized knowledge to generate value for 619 

the enterprise. 620 

In the traditional data warehouse, the data handling process followed the order above (i.e., collection, 621 
preparation, storage, and analysis.) The relational model was designed in a way that optimized the 622 
intended analytics. The different Big Data characteristics have influenced changes in the ordering of the 623 
data handling processes. Examples of these changes are as follows: 624 

 Data warehouse: Persistent storage occurs after data preparation 625 
 Big Data volume system: Data is stored immediately in raw form before preparation; preparation 626 

occurs on read, and is referred to as ‘schema on read’ 627 
 Big Data velocity application: The collection, preparation, and analytics (alerting) occur on the 628 

fly, and possibly includes some summarization or aggregation prior to storage 629 

Just as simulations split the analytical processing across clusters of processors, data processes are 630 
redesigned to split data transformations across data nodes. Because the data may be too big to move, the 631 
transformation code may be sent in parallel across the data persistence nodes, rather than the data being 632 
extracted and brought to the transformation servers. 633 

3.6 BIG DATA ANALYTICS  634 

Analytic processes are often characterized as discovery for the initial hypothesis formulation, 635 
development for establishing the analytics process for a specific hypothesis, and applied for the 636 
encapsulation of the analysis into an operational system. While Big Data has touched all three types of 637 
analytic processes, the majority of the changes is observed in development and applied analytics. New 638 
Big Data engineering technologies change the types of analytics that are possible, but do not result in 639 
completely new types of analytics. However, given the retrieval speeds, analysts are able to interact with 640 
their data in ways that were not previously possible. Traditional statistical analytic techniques downsize, 641 
sample, or summarize the data before analysis. This was done to make analysis of large datasets 642 
reasonable on hardware that could not scale to the size of the dataset. Big Data analytics often emphasize 643 
the value of computation across the entire dataset, which gives analysts better chances to determine 644 
causation, rather than just correlation. Correlation, though, is still useful when knowing the direction or 645 
trend of something is enough to take action. Today, most analytics in statistics and data mining focus on 646 
causation—being able to describe why something is happening. Discovering the cause aids actors in 647 
changing a trend or outcome. Actors, which in system development can represent individuals, 648 
organizations, software, or hardware, are discussed in NIST Big Data Interoperability Framework: 649 
Volume 2, Taxonomy. Big Data solutions make it more feasible to implement causation type of complex 650 
analytics for large, complex, and heterogeneous data.  651 
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In addition to volume, velocity, variety, and variability, several terms, many beginning with V, have been 652 
used in connection with Big Data requirements for the system architecture. Some of these terms strongly 653 
relate to analytics on the data. Veracity and provenance are two such terms and are discussed below. 654 

Veracity refers to the completeness and accuracy of the data and relates to the vernacular “garbage-in, 655 
garbage-out” description for data quality issues in existence for a long time. If the analytics are causal, 656 
then the quality of every data element is extremely important. If the analytics are correlations or trending 657 
over massive volume datasets, then individual bad elements could be lost in the overall counts and the 658 
trend will still be accurate. As mentioned in Section 2.2, many people debate whether “more data is 659 
superior to better algorithms,” but that is a topic better discussed elsewhere. 660 

As discussed in Section 3.1, the provenance, or history of the data, is increasingly an essential factor in 661 
Big Data analytics, as more and more data is being repurposed for new types of analytics in completely 662 
different disciplines from which the data was created. As the usage of data persists far beyond the control 663 
of the data producers, it becomes ever more essential that metadata about the full creation and processing 664 
history is made available along with the data. In addition, it is vital to know what analytics may have 665 
produced the data, since there are always confidence ranges, error ranges, and precision/recall limits 666 
associated with analytic outputs. 667 

Another analytics consideration is the speed of interaction between the analytics processes and the person 668 
or process responsible for delivering the actionable insight. Analytic data processing speed can fall along 669 
a continuum between batch and streaming oriented processing. Although the processing continuum 670 
existed prior to the era of Big Data, the desired location on this continuum is a large factor in the choice 671 
of architectures and component tools to be used. Given the greater query and analytic speeds within Big 672 
Data due to the scaling across a cluster, there is an increasing emphasis on interactive (i.e., real-time) 673 
processing Rapid analytics cycles allow an analyst to do exploratory discovery on the data, browsing 674 
more of the data space than might otherwise have been possible in any practical time frame. The 675 
processing continuum is further discussed in NIST Big Data Interoperability Framework: Volume 6, 676 
Reference Architecture. 677 

3.7 BIG DATA METRICS AND BENCHMARKS 678 

Initial considerations in the use of Big Data engineering include the determination, for a particular 679 
situation, of the size threshold after which data should be considered Big Data. Multiple factors must be 680 
considered in this determination and the outcome is particular to each application. As described in Section 681 
2.1, Big Data characteristics lead to use of Big Data engineering techniques to allow the data system to 682 
operate affordably and efficiently. Whether a performance or cost efficiency can be attained for a 683 
particular application requires a design analysis, which is beyond the scope of this report.  684 

There is a significant need for metrics and benchmarking to provide standards for the performance of Big 685 
Data systems. This topic is being addressed by the Transaction Processing Performance Council TCP-686 
xHD Big Data Committee, and available information from their efforts may be included in future versions 687 
of this report. 688 

3.8 BIG DATA SECURITY AND PRIVACY 689 

Security and privacy have also been affected by the emergence of the Big Data paradigm. A detailed 690 
discussion of the influence of Big Data on security and privacy is included in NIST Big Data 691 
Interoperability Framework: Volume 4, Security and Privacy. Some of the effects of Big Data 692 
characteristics on security and privacy summarized below: 693 

 Variety: Retargeting traditional relational database security to non-relational databases has been 694 
a challenge. An emergent phenomenon introduced by Big Data variety that has gained 695 
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considerable importance is the ability to infer identity from anonymized datasets by correlating 696 
with apparently innocuous public databases. 697 

 Volume: The volume of Big Data has necessitated storage in multi-tiered storage media. The 698 
movement of data between tiers has led to a requirement of systematically analyzing the threat 699 
models and research and development of novel techniques.  700 

 Velocity: As with non-relational databases, distributed programming frameworks such as Hadoop 701 
were not developed with security as a primary objective.  702 

 Veracity: Complex challenges have been introduced in protecting data integrity as well as 703 
maintaining privacy policies as data moves across individual boundaries to groups, communities 704 
of interest, state, national, and international boundaries.  705 

 Volatility: Security and privacy requirements can shift according to the time dependent nature of 706 
roles that collected, processed, aggregated, and stored it. Governance can shift as responsible 707 
organizations merge or even disappear 708 

Privacy concerns, and frameworks to address these concerns, predate Big Data. While bounded in 709 
comparison to Big Data, past solutions considered legal, social, and technical requirements for privacy in 710 
distributed systems, very large databases, and in HPCC. The addition of variety, volume, velocity, 711 
veracity, volatility, and value to the mix has amplified these concerns to the level of a national 712 
conversation, with unanticipated impacts on privacy frameworks. 713 

3.9 DATA GOVERNANCE 714 

Data governance is a fundamental element in the management of data and data systems.  715 

Data governance refers to administering, or formalizing, discipline (e.g., behavior 716 
patterns) around the management of data. 717 

The definition of data governance includes management across the complete data lifecycle, whether the 718 
data is at rest, in motion, in incomplete stages, or transactions. To maximize its benefit, data governance 719 
must also consider the issues of privacy and security of individuals of all ages, individuals as companies, 720 
and companies as companies.  721 

Data governance is needed to address important issues in the new global Internet Big Data economy. For 722 
example, many businesses provide a data hosting platform for data that is generated by the users of the 723 
system. While governance policies and processes from the point of view of the data hosting company are 724 
commonplace, the issue of governance and control rights of the data providers is new. Many questions 725 
remain including the following. Do they still own their data, or is the data owned by the hosting 726 
company? Do the data producers have the ability to delete their data? Can they control who is allowed to 727 
see their data?  728 

The question of governance resides between the value that one party (e.g., the data hosting company) 729 
wants to generate versus the rights that the data provider wants to retain to obtain their own value. New 730 
governance concerns arising from the Big Data Paradigm need greater discussion, and will be discussed 731 
during the development of the next version of this document.  732 

 733 
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4 BIG DATA ENGINEERING PATTERNS (FUNDAMENTAL 734 

CONCEPTS) 735 

To define the differences between Big Data technologies, different ‘scenarios’ and ‘patterns’ are needed 736 
to illustrate relationships between Big Data characteristics (Section 2.1) and between the NBDRA 737 
components found in NIST Big Data Interoperability Framework: Volume 6, Reference Architecture. The 738 
scenarios would describe the high-level functional processes that can be used to categorize and, therefore, 739 
provide better understanding of the different use cases presented in NIST Big Data Interoperability 740 
Framework: Volume 3, Use Cases and General Requirements, as well as help to clarify the differences in 741 
specific implementations of components listed in the NIST Big Data Interoperability Framework: Volume 742 
6, Reference Architecture.  743 

The topics surrounding the relaxation of the principles of a relational model in non-relational systems are 744 
very important. These topics are discussed in industry publications on concurrency, and will be addressed 745 
more fully in of future additions to this document. 746 

 747 
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Appendix A: Index of Terms  748 

 749 

 750 

751 

A 
analytics, 7 

B 
Big Data, 5, 6 
Big Data engineering, 5 
Big Data paradigm, 4 
Big Data velocity application, 14 
Big Data volume system, 14 

C 
complexity, 10 
Computational portability, 6 

D 
data lifecycle, 6 
data sampling, 8 
data science, 8 
data science paradigm, 6 
data scientist, 7 
data warehouse, 14 

F 
federated database system, 5 
fourth paradigm, 6 

M 
massively parallel processing, 4 
metadata, 10 

N 
non-relational models, 5NoSQL, 5 

O 
ontologies, 10 

P 
provenance, 13 
 

R 
relational model, 10 

S 
Schema-on-read, 6 
semantic data, 10 
semi-structured data, 10 
streaming data, 12 
structured data, 10 

T 
taxonomies, 10 

U 
unstructured data, 10 

V 
validity, 8 
value, 8 
variability, 4 
variety, 4 
velocity, 10 
veracity, 8 
volatility, 8 
volume, 4
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Appendix B: Terms and Definitions 731 

Analytics is the synthesis of knowledge from information. 732 

Big Data consists of extensive datasetsprimarily in the characteristics of volume, variety, velocity, 733 
and/or variabilitythat require a scalable architecture for efficient storage, manipulation, and analysis. 734 

Big Data engineering includes advanced techniques that harness independent resources for building 735 
scalable data systems when the characteristics of the datasets require new architectures for efficient 736 
storage, manipulation, and analysis. 737 

The Big Data paradigm consists of the distribution of data systems across horizontally coupled, 738 
independent resources to achieve the scalability needed for the efficient processing of extensive 739 
datasets. 740 

Computational portability is the movement of the computation to the location of the data. 741 

Data governance refers to the overall management of the availability, usability, integrity, and 742 
security of the data employed in an enterprise. 743 

The data lifecycle is the set of processes that transforms raw data into actionable knowledge, which 744 
includes data collection, preparation, analytics, visualization, and access. 745 

Data science is the empirical synthesis of actionable knowledge from raw data through the complete data 746 
lifecycle process. 747 

The data science paradigm is extraction of actionable knowledge directly from data through a process of 748 
discovery, hypothesis, and hypothesis testing. 749 

A Latency  is a practitioner who has sufficient knowledge in the overlapping regimes of business needs, 750 
domain knowledge, analytical skills, and software and systems engineering to manage the end-to-end 751 
data processes through each stage in the data lifecycle. 752 

Distributed Computing is a computing system in which components located on networked 753 
computers communicate and coordinate their actions by passing messages. 754 

Distributed File Systems contain multi-structured (object) datasets that are distributed across the 755 
computing nodes of the server cluster(s). 756 

A federated database system is a type of meta-database management system, which transparently maps 757 
multiple autonomous database systems into a single federated database. 758 

horizontal scaling implies the coordination of individual resources (e.g., server) that are integrated to act 759 
in parallel as a single system (i.e., operate as a cluster). 760 

Latency refers to the delay in processing or in availability. 761 

Massively parallel processing refers to a multitude of individual processors working in parallel to execute 762 
a particular program.  763 

Non-relational models, frequently referred to as NoSQL, refer to logical data models that do not follow 764 
relational algebra for the storage and manipulation of data. 765 

Resource Negotiation consists of built-in data management capabilities that provide the necessary 766 
support functions, such as operations management, workflow integration, security, governance, support 767 
for additional processing models, and controls for multi-tenant environments, providing higher 768 
availability and lower latency applications. 769 
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Schema-on-read is the application of a data schema through preparation steps such as transformations, 770 
cleansing, and integration at the time the data is read from the database.  771 

Shared-disk File Systems, such as Storage Area Networks (SANs) and Network Attached Storage (NAS), 772 
use a single storage pool, which is accessed from multiple computing resources. 773 

validity refers to appropriateness of the data for its intended use 774 

value refers to the inherent wealth, economic and social, embedded in any data set 775 

variability refers to the change in other data characteristics 776 

variety refers to data from multiple repositories, domains, or types 777 

velocity refers to the rate of data flow 778 

veracity refers to the accuracy of the data 779 

Vertical scaling implies increasing the system parameters of processing speed, storage, and memory for 780 
greater performance. 781 

volatility refers to the tendency for data structures to change over time  782 

volume refers to the size of the dataset 783 

 784 
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Appendix C: Acronyms 785 

API  application program interface 786 

BLOBs  binary large objects 787 

GB  gigabyte 788 

I/O input/output  789 

ISO International Organization for Standardization  790 

ITL Information Technology Laboratory  791 

JTC 1  Joint Technical Committee 1  792 

MPP massively parallel processing  793 

NARA National Archives and Records Administration  794 

NAS Network Attached Storage  795 

NASA National Aeronautics and Space Administration  796 

NBD-PWG NIST Big Data Public Working Group  797 

NBDRA NIST Big Data Reference Architecture  798 

NIST National Institute of Standards and Technology  799 

NSF National Science Foundation  800 

OED  Oxford English Dictionary  801 

P2P peer-to-peer  802 

SANs  Storage Area Networks  803 

SQL  Structured Query Language 804 

NoSQL Not Only or No Structured Query Language  805 

W3C  World Wide Web Consortium  806 

 807 
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